Abstract
In this paper hierarchical analysis-suitable T-splines (HASTS) are developed. The resulting spaces are a superset of both analysis-suitable T-splines and hierarchical B-splines. The additional flexibility provided by the hierarchy of T-spline spaces results in simple, highly localized refinement algorithms which can be utilized in a design or analysis context. A detailed theoretical formulation is presented. Bézier extraction is extended to HASTS simplifying the implementation of HASTS in existing finite element codes. The behavior of a simple HASTS refinement algorithm is compared to the local refinement algorithm for analysis-suitable T-splines demonstrating the superior efficiency and locality of the HASTS algorithm. Finally, HASTS are utilized as a basis for adaptive isogeometric analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.