Abstract
Titanium dioxide (TiO2) is a promising anode materials for lithium-ion batteries due to its advantages such as good safety, reliability, reversible capacity, high content and environmental friendliness. However, its inherent defects such as low ion diffusion coefficient and poor electrical conductivity seriously limit its practical application. In this study, we designed a unique hybrid structure of TiO2 nanoflowers percolated with carbon nanotubes (CNTs) by a low cost solution method. The hierarchical structure of TiO2 increases the specific surface area and shortens the ion/electron transport distance. CNTs are uniformly embedded in the interior of TiO2 nanoflowers to improve the overall conductivity and flexibility. As a result, the optimized TiO2@CNTs as lithium ion battery (LIBs) anode, showed excellent long-term cycle performance (177.5 mA h g−1, at 1.0 A g−1 after 600 cycles). The excellent reversibility and electrochemical kinetic performance are also studied by CV and EIS measurements. This work provides a new perspective for exploring efficient lithium storage for high performance anode materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.