Abstract
In order to improve the optimal setting temperature problem to achieve the global optimum of product performance, costs and benefits. In this article, a hierarchical structure optimal setting approach of production indexes for the rolling heating furnace temperature field (RHFTF) is proposed. It is composed of three layers with different functions to obtain the temperature control setting model of the RHFTF. In the first layer, the bi-feature Gaussian mixture model clustering (BFGMMC) algorithm of loading plan is proposed to optimize the setting of a limited number of slabs. In the second layer, the type-2 fuzzy rule interpolation (T2FRI) setting method is developed to obtain the optimal setting curve. Meanwhile, an improved KH (Kóczy-Hirota) α-cut distance (IKHCD) algorithm is proposed to get the miss information between any two adjacent interpolation points. In the third layer, knowledge feedforward compensation of rule matrices (KFCRM) algorithm is presented to improve the anti-interference ability of the setting model. The results of the study can demonstrate that the proposed method improves the accuracy of the model and optimizes the control strategy. Furthermore, the experimental results show that the proposed method meets the process technical requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.