Abstract

I define a set of conditions that the most general hierarchical Yukawa mass matrices have to satisfy so that the leading rotations in the diagonalization matrix are a pair of (2,3) and (1,2) rotations. In addition to Fritzsch structures, examples of such hierarchical structures include also matrices with (1,3) elements of the same order or even much larger than the (1,2) elements. Such matrices can be obtained in the framework of a flavor theory. To leading order, the values of the angle in the (2,3) plane (s_{23}) and the angle in the (1,2) plane (s_{12}) do not depend on the order in which they are taken when diagonalizing. We find that any of the Cabbibo-Kobayashi-Maskawa matrix parametrizations that consists of at least one (1,2) and one (2,3) rotation may be suitable. In the particular case when the s_{13} diagonalization angles are sufficiently small compared to the product s_{12}s_{23}, two special CKM parametrizations emerge: the R_{12}R_{23}R_{12} parametrization follows with s_{23} taken before the s_{12} rotation, and vice versa for the R_{23}R_{12}R_{23} parametrization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call