Abstract

The human visual system (HVS) is a hierarchical system, in which visual signals are processed hierarchically. In this paper, the HVS is modeled as a three-level communication system and visual perception is divided into three stages according to the hierarchical predictive coding theory. Then, a novel just noticeable distortion (JND) estimation scheme is proposed. In visual perception, the input signals are predicted constantly and spontaneously in each hierarchy, and neural response is evoked by the central residue and inhibited by surrounding residues. These two types' residues are regarded as the positive and negative visual incentives which cause positive and negative perception effects, respectively. In neuroscience, the effect of incentive on observer is measured by the surprise of this incentive. Thus, we propose a surprise-based measurement method to measure both perception effects. Specifically, considering the biased competition of visual attention, we define the product of the residue self-information (i.e., surprise) and the competition biases as the perceptual surprise to measure the positive perception effect. As for the negative perception effect, it is measured by the average surprise (i.e., the local Shannon entropy). The JND threshold of each stage is estimated individually by considering both perception effects. The total JND threshold is finally obtained by non-linear superposition of three stage thresholds. Furthermore, the proposed JND estimation scheme is incorporated into the codec of Versatile Video Coding for image compression. Experimental results show that the proposed JND model outperforms the relevant existing ones, and over 16% of bit rate can be reduced without jeopardizing the perceptual quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.