Abstract

It is rather essential to design porous carbon adsorbents with high CO2 capture performance for improving global warming and climate change. Activated carbon spheres with high specific surface area and hierarchical porous texture were prepared from polystyrene-based macroreticular resin spheres due to their low ash and mechanical stability by air pre-oxidization and steam activation. The as-prepared carbon spheres had a specific surface area of 1274.95 m2 g-1, total pore volume of 1.09 cm3 g-1 and micropore volume of 0.47 cm3 g-1. Moreover, these carbon spheres showed a hierarchical porous texture composed of ultrafine micropores (0.5-1 nm), micropores (1-2 nm), mesopores (10-50 nm) and macropores (50-100 nm). A CO2 adsorption capacity of 2.82 mmol g-1 for carbon spheres can be obtained at 30 °C and 1 atm. Further, after introducing nitrogen-containing functional groups by gaseous ammonia at 600 °C, these carbon spheres (NPSRCSs) exhibited a high CO2 adsorption capacity of 3.2 mmol g-1. In addition, excellent cyclic stability, low hygroscopicity and regenerability temperature suggested these carbon spheres were favorable for CO2 capture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call