Abstract

This study reports excellent supercapacitor performance of hierarchical composite porous carbon (HPC) materials successfully fabricated by one-step carbonization and activation process derived from polysaccharides carboxymethyl cellulose, bacterial cellulose, and citric acid. The resultant HPC displayed unique porous nanosheet morphology with high specific surface area (2490 m2 g−1) and rich oxygen content (7.3%). The developed structures with macropores, mesopore walls, micropores, and high oxygen content led to excellent electrochemical performance for electrode of electric double-layer capacitors (EDLCs). In a three-electrode system, the HPC electrode showed a high specific capacitance of 350 F g−1, good rate performance, and excellent cycling stability. The energy density of supercapacitor based on HPC was comparable to or higher than that of commercially supercapacitors. More importantly, two series-wound devices were easy to light light-emitting diode (LED, 3.0 V). These results suggest that the current material is a promising candidate for low-cost and eco-friendly energy storage devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call