Abstract

α-Fe2O3 is a semiconductor photocatalyst that can adsorb and reduce heavy metal ions from contaminated water. Here, hierarchical porous structured α-Fe2O3 was synthesised by thermal oxidation of iron wire at 400 °C – 700 °C in the presence of water vapour for 1 hour. The mechanism of formation of the iron oxide nanowires is proposed to follow stress-driven mechanism and when the nanowires merged, nanoblades resulted hierarchical porous structure. Field emission electron microscope (FESEM) images of the oxidized iron had shown the formation of surface oxide comprising of a hierarchical porous structures. High resolution transmission electron microscope (HRTEM) and Raman spectroscopy results confirmed that the iron oxide is consisted of α-Fe2O3 in the surface whereas Fe3O4 and FeO are in the inner layer. The oxides were immersed in Cr(VI) solution and illuminated under sunlight to produce reducing electrons. The highest reduction precentage of Cr(VI) at pH 2 on the hierarchical porous structure is 80.78% for synthesized sample at 500 °C. It may be due to the higher surface area of the porous hierarchical structure which provide more catalytic reaction sites hence improving the photocatalytic activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.