Abstract

In this paper, we apply the hierarchical modeling technique and study some numerical linear algebra problems arising from the Brownian dynamics simulations of biomolecular systems where molecules are modeled as ensembles of rigid bodies. Given a rigid body p consisting of n beads, the 6×3n transformation matrix Z that maps the force on each bead to p's translational and rotational forces (a 6 × 1 vector), and V the row space of Z, we show how to explicitly construct the (3n - 6) × 3n matrix consisting of (3n - 6) orthonormal basis vectors of V ⊥ (orthogonal complement of V) using only operations and storage. For applications where only the matrix-vector multiplications and are needed, we introduce asymptotically optimal hierarchical algorithms without explicitly forming . Preliminary numerical results are presented to demonstrate the performance and accuracy of the numerical algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.