Abstract

Evacuation planning is a fundamental requirement to ensure that most people can be evacuated to a safe area when a natural accident or an intentional act happens in a stadium environment. The central challenge in evacuation planning is to determine the optimum evacuation routing to safe areas. We describe the evacuation network within a stadium as a hierarchical directed network. We propose a multi-objective optimization approach to solve the evacuation routing problem on the basis of this hierarchical directed network. This problem involves three objectives that need to be achieved simultaneously, such as minimization of total evacuation time, minimization of total evacuation distance and minimal cumulative congestion degrees in an evacuation process. To solve this problem, we designed a modified ant colony optimization (ACO) algorithm, implemented it in the MATLAB software environment, and tested it using a stadium at the Wuhan Sports Center in China. We demonstrate that the algorithm can solve the problem, and has a better evacuation performance in terms of organizing evacuees’ space–time paths than the ACO algorithm, the kth shortest path algorithm and the second generation of non-dominated sorting genetic algorithm were used to improve the results from the kth shortest path algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.