Abstract
PurposeThe purpose of this paper is to propose a novel ant colony optimization (ACO) approach to optimal control. The standard ACO algorithms have proven to be very powerful optimization metaheuristic for combinatorial optimization problems. They have been demonstrated to work well when applied to various nondeterministic polynomial‐complete problems, such as the travelling salesman problem. In this paper, ACO is reformulated as a model‐free learning algorithm and its properties are discussed.Design/methodology/approachFirst, it is described how quantizing the state space of a dynamic system introduces stochasticity in the state transitions and transforms the optimal control problem into a stochastic combinatorial optimization problem, motivating the ACO approach. The algorithm is presented and is applied to the time‐optimal swing‐up and stabilization of an underactuated pendulum. In particular, the effect of different numbers of ants on the performance of the algorithm is studied.FindingsThe simulations show that the algorithm finds good control policies reasonably fast. An increasing number of ants results in increasingly better policies. The simulations also show that although the policy converges, the ants keep on exploring the state space thereby capable of adapting to variations in the system dynamics.Research limitations/implicationsThis paper introduces a novel ACO approach to optimal control and as such marks the starting point for more research of its properties. In particular, quantization issues must be studied in relation to the performance of the algorithm.Originality/valueThe paper presented is original as it presents the first application of ACO to optimal control problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Intelligent Computing and Cybernetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.