Abstract
Layered double hydroxides (LDHs) have recently been revealed to be promising in gas sensor applications due to their compositional flexibility and unique 2D-interlayer channel for gas diffusion and adsorption. This work demonstrates highly porous hierarchical LDHs containing Mg2+ and Al3+ (MgAl-LDHs) for ethanol sensing at room temperature. These MgAl-LDHs, with unique flower-like hierarchical structure and mesoporous interlayer, were synthesized hydrothermally using sodium dodecyl sulfate as soft template as well as intercalating agent. Further modification by discrete Ag nanoparticles (NPs) was achieved via an environmentally friendly glucose-reduction method to improve the gas-sensing response of the LDH-based sensor. It is found that the hierarchical MgAl-LDHs show potential in sensing ethanol gas with rapid dynamic characteristics at room temperature; their response magnitude towards ethanol can be enhanced significantly by Ag NP modification. The gas-response value of the Ag-modified MgAl-LDH sensor is about twice that of pristine MgAl-LDH sensors, towards 5–200 ppm ethanol at room temperature. Meanwhile, rapid response-recovery characteristics are achieved, with response and recovery times shorter than 10 and 50 s, respectively. The satisfactory sensing performance and remarkable response enhancement by Ag NP modification are demonstrated in terms of the unique microstructure of the hierarchical MgAl-LDHs and a constructed conductive effect model of Ag functionalized LDHs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.