Abstract

Formaldehyde (HCHO) is regarded as the most ubiquitous indoor pollutant, which causes severe health symptoms for humans. Catalytic oxidation at ambient temperature has been identified as the most promising technique for indoor HCHO removal. Herein, a hierarchical honeycomb-like nanocomposite of reduced graphene oxide (rGO) and nickel-iron layered double hydroxide (NiFe-LDH) was prepared via a hydrothermal method. After decoration of the NiFe-LDH/rGO with 0.34 wt% of platinum (Pt), the Pt/NiFe-LDH/rGO showed excellent catalytic performance for HCHO degradation at room temperature, which are due basically to the better dispersion of both NiFe-LDH and rGO in the composite. This structural characteristic endows Pt/NiFe-LDH/rGO with larger surface area, thus resulting in plentiful surface active sites and highly dispersed Pt nanoparticles, which are conducive to the activation of both surface oxygen atoms of NiFe-LDH and adsorbed oxygen molecules. Moreover, dioxymethylene and formate were major reaction intermediates, while surface hydroxyl groups and surface active oxygen atoms were the key species involved in the catalytic reaction, which shed light on the HCHO oxidation mechanism. This work demonstrates that introducing graphene materials into hierarchical catalysts can enhance the removal of gaseous HCHO and potentially other indoor pollutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.