Abstract
We present a new route to stable magnetic-plasmonic nanocomposite materials with exceptional control over composite size and very high monodispersity. The method involves the assembly of magnetic iron oxide nanoparticles, of any size in the superparamagnetic size range, whose steric repulsion is gradually reduced by competitive stabilizer desorption arising from the presence of a tertiary silica phase. Subsequent addition of gold nanoparticles results in hierarchical assemblies in the form of gold-decorated magnetic nanoparticle clusters, in a range of possible sizes from 20 to 150 nm, selected by the timing of the addition. This approach adds plasmonic and chemical functionality to the magnetic clusters and improves the physical robustness and processability of the suspensions. Most critically, detailed NMR relaxation analysis demonstrates that the effect of the gold NPs on the interaction between bulk solvent and the magnetic moments of the cluster is minimal and that the clusters remain superparamagnetic in nature. These advantages enhance the potential of the materials as size-selected contrast agents for magnetic resonance imaging. The possibility of generalizing the approach for the production of hierarchical assemblies of variable composition is also demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.