Abstract

Here we asked if insulin activation of the nucleus accumbens in vitro is reflected by an increase in (3)H-deoxyglucose ([(3)H]DG) uptake, thus subserving a new model to study molecular mechanisms of central insulin actions. Additionally, we investigated the dependence of this insulin effect on endocannabinoids and corticosteroids, two major culprits in insulin resistance. We found that in acute accumbal slices, insulin (3 and 300nM but not at 0.3nM) produced an increase in [(3)H]DG uptake. The synthetic cannabinoid agonist, WIN55212-2 (500nM) and the glucocorticoid dexamethasone (10μM), impaired insulin (300nM) action on [(3)H]DG uptake. The glucocorticoid receptor (GcR) antagonist, mifepristone (10μM) prevented dexamethasone from inhibiting insulin's action. Strikingly, this anti-insulin action of dexamethasone was also blocked by two CB1 cannabinoid receptor (CB1R) antagonists, O-2050 (500nM) and SR141716A (500nM), as well as by tetrahydrolipstatin (10μM), an inhibitor of diacylglycerol lipases-the enzymes responsible for the synthesis of the endocannabinoid, 2-arachidonoyl-glycerol (2-AG). On the other hand, the blockade of the post-synaptic 2-AG metabolizing enzymes, α,β-serine hydrolase domain 6/12 by WWL70 (1μM) also prevented the action of insulin, probably via increasing endogenous 2-AG tone. Additionally, an anti-insulin receptor (InsR) antibody immunoprecipitated CB1Rs from accumbal homogenates, indicating a physical complexing of CB1Rs with InsRs that supports their functional interaction. Altogether, insulin stimulates glucose uptake in the nucleus accumbens. Accumbal GcR activation triggers the synthesis of 2-AG that in turn binds to the known CB1R-InsR heteromer, thus impeding insulin signaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.