Abstract
Using computer simulation, we investigate the glass transition of a two-dimensional hard-hemidisk system. Upon increasing the packing fraction of the system, we find that the system vitrifies into a glass with local assembled discal "dimers", which are free to rotate in a collective way. The rotational mean square displacement does not exhibit the typical plateau (slowdown) like what occurs in the translational mean square displacement. This effect induces a pronounced violation of the rotational Stokes-Einstein relationship compared with the translational degree of freedom at the supercooled region. However, the obtained glass transition points in these two freedom degrees are found to be the same within the numerical accuracy, which is due to the strong positive spatial and dynamic correlation between translational and rotational slow-moving particles. Moreover, we find that the locally assembled dimers can serve as fast rotating gears facilitating the orientational relaxation in the system, and this suggests that the locally favored finite structures play an important role in the hierarchical glass transition of anisotropic colloids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.