Abstract

Faults and malfunctions on complex chemical production systems generate alarm cascades that hinder the work of the operators and make fault diagnosis a complex and challenging task. The core concept of our work is the incorporation of the hierarchical structure of the technology in a multi-temporal sequence mining algorithm to group the large number of variables. The spreading of the effect of malfunctions over the plant is thoroughly traceable on the higher levels of the hierarchy, while the critical elements of the spillover effect can be detected on the lower levels. Confidence-based goal-oriented measures have been proposed to describe the orientation of fault propagation providing a good insight into the causality on a local level of the process, while the network-based representation yields a global view of causal connections. The effectiveness of the proposed methodology is presented in terms of the analysis of the alarm and event-log database of an industrial delayed-coker plant, where the complexity of the problem and the size of the event-log database requires a hierarchical constraint-based representation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.