Abstract

This work presents a new approach for designing decentralized receding horizon controllers (DRHC) for cooperative multiple vehicle systems with inter-vehicle communication delays arising from communication failures. Using DRHC each vehicle plans its own state trajectory over a finite prediction time horizon. The neighboring vehicles then exchange their predicted trajectories at each sample time to maintain cooperation objectives. Such communication failures lead to large, inter-vehicle communication delays of exchanged information. Large inter-vehicle communication delays can potentially lead to degraded cooperation performance and unsafe vehicle motion. To maintain desired cooperation performance during faulty conditions, the proposed fault-tolerant DRHC architecture estimates the tail part of the neighboring vehicle trajectory that is unavailable due to communication delays. Furthermore, to address the safety of the team against possible collisions during faulty situations, a fault-tolerant DRHC is developed, which provides safety using a safe protection zone called a tube around the trajectory of faulty neighboring vehicles. The radius of the tube increases with communication delay and maneuverability. A communication failure diagnosis algorithm is also developed. The required communication capability for the fault-diagnosis algorithm and fault-tolerant DRHC suggests a hierarchical fault-tolerant DRHC architecture. Simulations of formation flight of miniature hovercrafts are used to illustrate the effectiveness of the proposed fault-tolerant DRHC architecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.