Abstract

In this paper, the decentralized receding horizon control (DRHC) of multiple cooperative vehicles with the possibility of communication failure is investigated. The neighboring vehicles exchange their computed trajectories at each sample time to maintain cooperation objectives. It is assumed that the communication failure is partial in nature, which in turn leads to large communication delays. A new reconfigurable DRHC approach is developed that guarantees the safety of the entire fleet in the presence of inter-vehicle communication failures. The concept of tube RHC is introduced to guarantee the safety of the fleet against collisions during faulty conditions. In this approach, a tube shaped trajectory set is used instead of a trajectory for the neighboring vehicles experiencing the communication failure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.