Abstract

In this paper, the hierarchical control strategy of a photovoltaic/battery based dc microgrid is presented for electric vehicle (EV) wireless charging. Considering irradiance variations, battery charging/discharging requirements, wireless power transmission characteristics, and onboard battery charging power change and other factors, the possible operation states are obtained. A hierarchical control strategy is established, which includes central and local controllers. The central controller is responsible for the selection and transfer of operation states and the management of the local controllers. Local controllers implement these functions, which include PV maximum power point tracking (MPPT) algorithm, battery charging/discharging control, voltage control of DC bus for high-frequency inverter, and onboard battery charging control. By optimizing and matching parameters of transmitting coils, receiving coils and compensation capacitors, the wireless power transmission system is designed to be resonant when it is operating at the rated power, with the aim to achieve the optimum transmission system efficiency. Simulation and experimental results of the hierarchical control of the microgrid with electric vehicle wireless charging are established, showing the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.