Abstract

AbstractWe present an approach of hierarchical decision making in production planning and capacity expansion problems under uncertainty. We show that under reasonable assumptions, the strategic level management can base the capacity decision on aggregated information from the shopfloor, and the operational level management, given this decision, can derive a production plan for the system, without too large a loss in optimality when compared to simultaneous determination of optimal capacity and production decisions.The results are obtained via an asymptotic analysis of hierarchical investment and production decisions in a manufacturing system with machines subject to breakdown and repair. The demand facing the system is assumed to be a deterministic monotone increasing function. The production capacity can be increased by purchasing a finite number of new machines over time. The control variables are a sequence of purchasing times and a production plan. The rate of change in machine states is assumed to be much larger than the rate of discounting of costs. This gives rise to a limiting problem in which the stochastic machine availability is replaced by the equilibrium mean availability. The value function for the original problem converges to the value function of the limiting problem. Three different methods are developed for constructing decisions for the original problem from the optimal solution of the limiting problem in a way which guarantees the asymptotic optimality of constructed decisions. Finally, it is shown that as the number of machine that could be purchased tends to infinity, the problem approximates the corresponding problem with no limit on number of machine purchases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.