Abstract
Abstract Production planning and scheduling problems are highly interdependent as scheduling provides optimum allocation of resources and planning is an optimum utilization of these allocated resources to serve multiple customers. Researchers have solved production planning and scheduling problems by the sequential method. But, in this case, the solution obtained by the production planning problem may not be feasible for scheduling method. Hence, production planning and scheduling problems must be solved simultaneously. Therefore, in this work, a mathematical model is developed to integrate production planning and scheduling problems. The solution to this integrated planning and scheduling problem is attempted by using a discrete artificial bee colony (DABC) algorithm. To speed up the DABC algorithm, a k-means clustering algorithm is used in the initial population generation phase. This k-means clustering algorithm will help to converge the algorithm in lesser time. A real-life case study of a soap manufacturing industry is presented to demonstrate the effectiveness of the proposed approach. An objective function to minimize overall cost, which comprises the processing cost, material cost, utility cost, and changeover cost, is considered. The results obtained by using DABC algorithm are compared with those obtained by CPLEX software. There is a saving of ₹2 23 324 for weeks 1–4 in overall cost compared with the results obtained by using CPLEX software.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.