Abstract
Multi-view subspace clustering has attracted much attention because of its effectiveness in unsupervised learning. The high time consumption and hyper-parameters are the main obstacles to its development. In this paper, we present a novel method to effectively solve these two defects. First, we employ the bisecting k-means method to generate anchors and construct the hierarchical bipartite graph, which greatly reduce the time consumption. Moreover, we adopt an auto-weighted allocation strategy to learn appropriate weight factors for each view, which can avoid the influence of hyper-parameters. Furthermore, by imposing low rank constraints on the fusion graph, our proposed method can directly obtained the cluster indicators without any post-processing operations. Finally, numerous experiments verify the superiority of proposed method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have