Abstract

A new kind of hierarchical Pd-Bi2WO6 architecture decorated with different molar ratios of Pd to Bi, has been fabricated by a hydrothermal process, followed by a chemical deposition method. The photocatalytic activities of the pure Bi2WO6 and Pd-Bi2WO6 nanocatalyst were examined in the degradation of Rhodamine B (RhB) dyes and phenol under visible light. The photocatalytic results showed that the Pd-Bi2WO6 nanocomposites possessed observably enhanced photocatalytic activities. Particularly, the 2.0% Pd loaded Bi2WO6 had the highest photocatalytic activity, exhibiting a nearly complete degradation of 30mg/L RhB and 10mg/L phenol within only 50 and 60min, respectively. In addition, the trapping experiment results indicated that the photo-generated holes (h+) and O2− played a crucial role in the degradation of RhB. According to the experimental results, the photocatalytic degradation mechanism of Pd-Bi2WO6 was also proposed. The enhanced photocatalytic activities were ascribed to the combined effects of the highly efficient separation of electrons and holes, improved visible light utilization and increased BET specific surface areas of the Pd-Bi2WO6 nanocomposites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.