Abstract

In the present work, for the first time, we report the growth of hierarchical assemblies of Si3N4 nanostructures via catalyst-assisted pyrolysis of a polymeric precursor on the Si substrates. The synthesized products were characterized by using field emission scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. It is found that the size of the catalytic droplet plays a critical role on the formation of hierarchical assemblies of Si3N4 nanostructures rather than common single nanowire. A mechanism based on the Vapor–Liquid–Solid (VLS) process was proposed for the assembly of hierarchical Si3N4 nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.