Abstract

Due to high latency and high power consumption in long hops between operational cores of Network-on-Chips (NoCs), the performance of such architectures has been limited. Billions of transistors available on a single chip present opportunities for new levels of computing capability. In order to fill the gap between computing requirements and efficient communications, a new technology called Wireless NoC has been emerged. Employing wireless communication links between cores, wireless NoC has reasonably increased the performance of NoC. However, wireless transceivers along with associated antenna impose considerable area and power overheads in wireless NoCs. Thus, in this paper, we introduce a hybrid wireless NoC called Hierarchical Wireless-based Architecture (HiWA) to use the wireless resources optimally. In the proposed approach the network is divided into subnets where intra-subnet nodes communicate through wire links while inter-subnet communications are handled almost by single-hop wireless links. Simulation results show that HiWA efficiently reduces power consumption by 39% in comparison with a traditional wireless NoC, called WiNoC, while still achieves 16% lower packet latency than conventional NoC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call