Abstract

The communication among heterogeneous embedded devices could lead to correctness problems in M2M environment. Sometimes, it is not easy to classify the data because they may provide wrong or uncertain information. The data from these devices should be gathered in a safe, efficient, and right manner without the help of server or human intervention; even the low-level information from each device causes interoperability problems. This data gathering or data fusion process is very important because the data mapping result could be understood as totally different situation and hence cause different reaction, feedback, and controls. In this paper, we propose a hierarchical aggregation for uncertain sensor data using reinforcement learning to get correct and efficient data gathering result for reliable wireless sensor network. In our proposal, we add a new category for uncertain data and classify them through reinforcement learning using hierarchical subcategories. By adopting our proposed aggregation, false classification caused by uncertain data can be decreased and the correctness of data gathering can be enhanced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.