Abstract

Bell’s inequality is an empirical constraint on theories with hidden variables, which Einstein, Podolsky and Rosen argued are needed to explain observed perfect correlations if keeping locality. One way to deal with the empirical violation of Bell’s inequality is by openly embracing nonlocality, in a theory like the pilot-wave theory. Nonetheless, recent proposals have revived the possibility that one can avoid nonlocality by resorting to superdeterministic theories. These are local hidden variables theories which violate statistical independence which is one assumption of Bell’s inequality. In this paper I compare and contrast these two hidden variable strategies: the pilot-wave theory and superdeterminism. I show that even if the former is nonlocal and the other is not, both are contextual. Nonetheless, in contrast with the pilot-wave theory, superdeterminist contextuality makes it impossible to test the theory (which therefore becomes unfalsifiable and unconfirmable) and renders the theory uninformative (measurement results tell us nothing about the system). It is questionable therefore whether a theory with these features is worth its costs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.