Abstract

Speech signals are nonlinear chaotic time series. This paper proposes a novel speech signal nonlinear prediction model with the hidden phase space reconstruction method. The parameters, embedding dimension m, time delay τ and model structure are solved simultaneously, breaking the restriction of phase space, which needs to be reconstructed before modeling for the existing prediction method. Subsequently, an explicit speech signal prediction model is generated. Meanwhile, the introduction of the frame length parameter k effiectively extends the prediction length. Experimental results show that the values of m and τ solved by the proposed method are consistent with the values addressed by the Cao method and mutual information method, respectively. In addition, the optimal value of k is further discussed. The prediction results obtained using the proposed model are more accurate than those of linear prediction coding, the radial basis function neural network model and the long short-term memory network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.