Abstract

Although the hidden Markov models (HMM) are very popular in many applied areas their use in reliability engineering is limited. Problems such as the selection of the HMM model by choosing the appropriate number of states, or problems of prediction of failures have not been widely covered in the literature. This paper is concerned with the use of HMMs where the state of the system is not directly observable and instead certain indicators of the true situation are provided via a control system. A hidden model can provide key information about the system dependability such as the failed component of the system, the reliability of the system and related measures. A maximum-likelihood estimator of the system reliability is obtained and its asymptotic properties are studied. Finally, the maintenance of the system is considered in this context and new preventive maintenance strategies are defined and their efficiency is measured in terms of expected cost. To prove the finite sample performance of the methodology, an extensive simulation study is developed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.