Abstract
Micro-simulation travel demand and land use models require a synthetic population, which consists of a set of agents characterized by demographic and socio-economic attributes. Two main families of population synthesis techniques can be distinguished: (a) fitting methods (iterative proportional fitting, updating) and (b) combinatorial optimization methods. During the last few years, a third outperforming family of population synthesis procedures has emerged, i.e., Markov process-based methods such as Monte Carlo Markov Chain (MCMC) simulations. In this paper, an extended Hidden Markov Model (HMM)-based approach is presented, which can serve as a better alternative than the existing methods. The approach is characterized by a great flexibility and efficiency in terms of data preparation and model training. The HMM is able to reproduce the structural configuration of a given population from an unlimited number of micro-samples and a marginal distribution. Only one marginal distribution of the considered population can be used as a boundary condition to “guide” the synthesis of the whole population. Model training and testing are performed using the Survey on the Workforce of 2013 and the Belgian National Household Travel Survey of 2010. Results indicate that the HMM method captures the complete heterogeneity of the micro-data contrary to standard fitting approaches. The method provides accurate results as it is able to reproduce the marginal distributions and their corresponding multivariate joint distributions with an acceptable error rate (i.e., SRSME=0.54 for 6 synthesized attributes). Furthermore, the HMM outperforms IPF for small sample sizes, even though the amount of input data is less than that for IPF. Finally, simulations show that the HMM can merge information provided by multiple data sources to allow good population estimates.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have