Abstract

This paper reports the finding of a four-dimensional (4D) non-Sil'nikov autonomous system with three quadratic nonlinearities, which exhibits some behavior previously unobserved: hidden hyperchaotic attractors with only one stable equilibrium. The algebraical form of the non-Sil'nikov chaotic attractor is very similar to the hyperchaotic Lorenz–Stenflo system but they are different and, in fact, nonequivalent in topological structures. Of particular interest is the fact this system has only one stable equilibrium, but can exhibit hidden hyperchaos, chaos, periodic orbit. Moreover, the coexistence of attracting sets can be obtained in the system for some parameter values and different initial conditions, such as hyperchaotic attractor and point, hyperchaotic attractor and period orbit. To further analyze the new system, the ultimate bound and positively invariant set for the modified hyperchaotic Lorenz–Stenflo system are also obtained. Moreover, the complete mathematical characterizations for 4D Hopf bifurcation are rigorously derived and studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.