Abstract

Animals with bilateral symmetry comprise the majority of the described species within Metazoa. However, the nature of the first bilaterian animal remains unknown. As most recent molecular phylogenies point to Xenacoelomorpha as the sister group to the rest of Bilateria, understanding their biology, ecology and diversity is key to reconstructing the nature of the last common bilaterian ancestor (Urbilateria). To date, sampling efforts have focused mainly on coastal areas, leaving potential gaps in our understanding of the full diversity of xenacoelomorphs. We therefore analysed 18S rDNA metabarcoding data from three marine projects covering benthic and pelagic habitats worldwide. Our results show that acoels have a greater richness in planktonic environments than previously described. Interestingly, we also identified a putative novel clade of acoels in the deep benthos that branches as sister group to the rest of Acoela, thus representing the earliest-branching acoel clade. Our data highlight deep-sea environments as an ideal habitat to sample acoels with key phylogenetic positions, which might be useful for reconstructing the early evolution of Bilateria.

Highlights

  • The vast majority of the described animal species are bilaterally symmetrical [1]

  • As most recent molecular phylogenies point to Xenacoelomorpha as the sister group to the rest of Bilateria, understanding their biology, ecology and diversity is key to reconstructing the nature of the last common bilaterian ancestor (Urbilateria)

  • Bilaterian animals are separated into four major groups: Acoelomorpha, Ecdysozoa, Lophotrochozoa and Deuterostomia [1,3,4]

Read more

Summary

Introduction

The vast majority of the described animal species are bilaterally symmetrical [1]. The establishment of two orthogonal body axes provided the basis for enormous structural complexity compared with radially symmetrical animals, which allowed a more diverse evolutionary outcome [2]. As most recent molecular phylogenies point to Xenacoelomorpha as the sister group to the rest of Bilateria, understanding their biology, ecology and diversity is key to reconstructing the nature of the last common bilaterian ancestor (Urbilateria). Our data highlight deep-sea environments as an ideal habitat to sample acoels with key phylogenetic positions, which might be useful for reconstructing the early evolution of Bilateria.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.