Abstract
This review provides an update on the pathophysiology of sickle cell disease (SCD) with a particular focus on the dysregulation of the von Willebrand factor (VWF) - ADAMTS13 axis that contributes to its pathogenesis. In discussing recent developments, we hope to encourage new and ongoing discussions surrounding therapeutic targets for SCD. Within the last 5 years, the role of VWF in the pathophysiology of SCD has been further elucidated and is now a target of study in ongoing clinical trials. The pathophysiology of SCD is multifaceted, as it involves systemwide vascular activation, altered blood rheology, and the activation of immune responses and coagulative pathways. The presence of VWF in excess in SCD, particularly in its largest multimeric form, greatly contributes to its pathogenesis. Understanding the molecular mechanisms that underly the presence of large VWF multimers in SCD will provide further insight into the pathogenesis of SCD and provide specific targets for therapy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have