Abstract
IGR J18245-2452 is the fifteenth discovered accreting millisecond X-ray pulsar and the first source of this class showing direct evidence for transition between accretion and rotational powered emission states. These swing provided the strongest confirmation of the pulsar recycling scenario available so far. During the two XMM-Newton observations that were carried out while the source was in outburst in April 2013, IGR J18245-2452 displayed a unique and peculiar variability of its X-ray emission. In this work, we report on a detailed analysis of the XMM- Newton data and focus in particular on the timing and spectral variability of the source. IGR J18245-2452 continuously switches between lower and higher intensity states, with typical variations in flux up to a factor of about 500 in time scales as short as few seconds. These variations in the source intensity are sometimes associated to a dramatic spectral hardening, during which the power-law photon index of the source changes from Gamma=1.7 to Gamma=0.9. The pulse profiles extracted at different count rates and energies show a complex variability. These phenomena are not usually observed in accreting millisecond X-ray pulsars, at least not on such a short time scale. Fast variability was also found in the ATCA radio observations carried out for about 6 hours during the outburst at a frequency of 5.5 and 9 GHz. We interpret the variability observed from IGR J18245-2452 in terms of a "hiccup" accretion phase, during which the accretion of material from the inner boundary of the Keplerian disk is reduced by the onset of centrifugal inhibition of accretion, possibly causing the launch of strong outflows. Changes across accretion and propeller regimes have been long predicted and reproduced by MHD simulations of accreting millisecond X-ray pulsars but never observed to produce an extreme variability as that shown by IGR J18245-2452.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have