Abstract

Commercially available spinel cobalt blue (CoAl2O4) utilizes a significant amount of carcinogenic Co2+, which makes its synthesis more hazardous and environmentally harmful. Considerable effort has been put into developing more environmentally benign and robust blue pigments to replace cobalt blue. A new class of blue pigments with tunable hue were prepared. The solid solution series, CaAl12–2xCoxTixO19 (0 < x ≤ 1), crystallizes in a hexagonal mineral hibonite (CaM12O19) structure with five distinct crystallographic sites for M cations (M = Al, Co, and Ti). The origin of intense blue color is attributed to a synergistic effect of allowed d–d transitions involving the chromophore Co2+ in both tetrahedral and trigonal bipyramidal crystal fields. Compared with commercial cobalt blue, these tunable hibonite blues possess a reddish hue that intensifies the blue color as observed in Y(In,Mn)O3 (YInMn) blues, with a significant reduction of Co2+ concentration from 33% to as low as 4% by mass. A significant advantage of hibonite blues over cobalt blue is the substantial reduction in carcinogenic cobalt content while enhancing the color properties at a reduced cost for raw materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.