Abstract
In the present digital era, the exploitation of medical technologies and massive generation of medical data using different imaging modalities, adequate storage, management, and transmission of biomedical images necessitate image compression techniques. Vector quantization (VQ) is an effective image compression approach, and the widely employed VQ technique is Linde–Buzo–Gray (LBG), which generates local optimum codebooks for image compression. The codebook construction is treated as an optimization issue solved with utilization of metaheuristic optimization techniques. In this view, this paper designs an effective biomedical image compression technique in the cloud computing (CC) environment using Harris Hawks Optimization (HHO)-based LBG techniques. The HHO-LBG algorithm achieves a smooth transition among exploration as well as exploitation. To investigate the better performance of the HHO-LBG technique, an extensive set of simulations was carried out on benchmark biomedical images. The proposed HHO-LBG technique has accomplished promising results in terms of compression performance and reconstructed image quality.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have