Abstract
Classical solid-state detection of x-ray and gamma-ray radiation consists of a high voltage applied between two metallic contacts sandwiching a high resistivity, high dielectric strength material; high voltage and high resistivity are required to enable complete charge collection while minimizing the resolution-degrading leakage current (dark current). We report here the conception and successful fabrication and test of a new device construct which changes this paradigm. P-type and n-type layers are fabricated by mercury cadmium telluride (HC.T) liquid phase epitaxy (LPE) on opposite sides of a high-quality wafer of CdZnTe (CZT) in order to construct a p-i-n diode structure. Wafers up to 9 cm2 area have been grown. This diode structure provides an extremely high effective resistivity and barrier to the flow of dark current in the device. Several wafer lots have repeatably yielded p-i-n detectors which exhibit typical diode current-voltage (I-V) curves with very low dark currents at very high bias voltages. Spectra obtained from these detectors produce exceptionally sharp photopeaks which exhibit very little low-energy tailing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.