Abstract
Chromium (Cr) soil contamination is a critical global environmental concern, with hexavalent chromium (Cr[VI]) being especially perilous due to its high mobility, bioavailability, and phytotoxicity. This poses a significant threat to the cultivation of crops, particularly rice, where the mechanisms of Cr(VI) absorption remain largely unexplored. This study uncovered a competitive interaction between Cr(VI) and essential nutrients—sulfate and phosphate during the uptake process. Notably, deficiencies in sulfate and phosphate were associated with a marked increase in Cr(VI) accumulation in rice, reaching up to 76.5 % and 77.7 %, respectively. Employing q-PCR, this study identified significant up-regulation of the sulfate transporter gene, OsSultr1;2, and the phosphate transporter gene, OsPht1;1, in response to Cr(VI) stress. Genetic knockout studies have confirmed the crucial role of OsSultr1;2 in Cr(VI) uptake, with its deletion leading to a 36.1 % to 69.6 % decrease in Cr uptake by rice roots. Similarly, the knockout of OsPht1;1 resulted in an 18.1 % to 25.7 % decrease in root Cr accumulation. These findings highlight the key role of the sulfate transporter OsSultr1;2 in Cr(VI) uptake, with phosphate transporters also contributing significantly to the process. These insights are valuable for developing rice varieties with reduced Cr(VI) accumulation, ensuring the safety of rice grain production.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have