Abstract
Repair of plasma damaged nanoporous organosilicate films carried out by hexamethyldisilazane (HMDS) vapor treatment was investigated as a function of temperature. Capacitance–voltage measurements were carried out before and after HMDS vapor treatment. The dielectric constant measurements confirm that the HMDS vapor treatment facilitates only partial curing of the plasma damaged films, as also observed from the Fourier transform infrared absorption measurements. Bias temperature stress measurements for samples with copper (Cu) metal electrodes reveal a shift of − 35 V in the capacitance–voltage curve for samples cured at 55 °C whereas negligible shift is observed for samples treated above 80 °C. This behavior suggests the existence of a dense solid layer on the top surface of the samples treated above 80 °C, hindering the diffusion or movement of Cu ions into the dielectric. Direct imaging of the HMDS vapor treated plasma damaged films using scanning electron microscope clearly shows the existence of two distinct layers, with the top layer (at the film–air interface) being denser than the bottom layer at the film–substrate interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.