Abstract
In this manuscript, a hexagonal-shaped graphene quantum plasmonic nanopatch antenna sensor is designed and investigated on silicon dioxide, zinc oxide and silicon substrates for quantum plasmonic biosensing applications. The optical properties of graphene are demonstrated using Kubo modeling to analyze the plasmon resonance characteristics of the nanopatch antenna. Nano-circuit modeling of the hexagonal-shaped graphene nano-antenna is proposed and validated using CST simulations. The parametric analysis of the hexagonal-shaped nanopatch antenna is performed using design parameters such as R (radius of the hexagon), Tp (thickness of the hexagon) and µc (chemical potential of graphene) to obtain optimum characteristics suitable for quantum plasmonic sensing applications. The study demonstrates that the proposed hexagonal-shaped nano-antenna exhibits gain of 4.9 dBi, 2.46 dBi, 14.99 dBi, 8.25 dBi, 5.15 dBi, 10.87 dBi and 2.4 dBi at 29.87 THz, 30 THz, 35 THz, 113.5 THz, 132.5 THz, 85 THz and 24 THz, respectively. The field enhancement factors observed at these frequencies are 794, 779, 584, 255, 234, 654 and 217, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.