Abstract

Hexagonal mesoporous silica (HMS)-supported copper oxides (CuO/HMS) have been prepared by a sol-gel method and characterized by X-ray diffraction, FTIR spectroscopy, transmission electron microscopy, N2 sorption, inductively coupled plasma (ICP), X-ray photoelectron spectroscopy (XPS), H2 temperature-programed reduction (TPR), NH3 temperature-programed desorption (TPD), and high-resolution (HR)-TEM techniques. An analysis of these results revealed a mesoporous material system with a high surface area (974 m2 g-1 ) and uniform pore-size distribution. The catalytic efficacy of CuO on the HMS support with varying Cu loadings (1, 3, 5, 10, and 15 wt %) was investigated for the transformation of aldehydes to primary amides; 3 wt % CuO/HMS exhibited good catalytic performance with good to excellent yields of amides (60-92 %) in benign aqueous medium. The intrinsically heterogeneous catalyst could be recovered after the reaction and reused without any noticeable loss in activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.