Abstract

Abstract The Al-doped Ni2P/Al-SBA-15 catalyst with high hydrodeoxygenation (HDO) activity was synthesized by temperature programmed reduction at a relatively low reduction temperature of 400 °C. The as-prepared catalyst was characterized by X-ray diffraction (XRD), H2 temperature-programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), NH3 temperature programmed desorption (NH3-TPD), N2 adsorption–desorption and CO uptake. The effect of Al on benzofuran (BF) HDO performance was investigated. The result indicates that the incorporation of Al into the SBA-15 support can promote the formation of much uniform, smaller, highly dispersed Ni2P particles on the catalyst. The Al also contributes to suppress the enrichment of P and promote more exposed Ni sites on the surface. In addition, the incorporation of Al can enhance the acid strength. The total deoxygenated product yield over Ni2P/Al-SBA-15 reached 90.3%, which is an increase of 19.4%, when compared with that found for Ni2P/SBA-15 (70.9%).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call