Abstract

The nitrogen triple bond dissociates in the 100GPa pressure range and a rich variety of single-bonded polymeric nitrogen structures unique to this element have been predicted up to the terapascal pressure range. The nonmolecular cubic-gauche (cg-N) structure was first observed above 110GPa, coupled to high temperature (>2000 K) to overcome the kinetic barrier. A mixture of cg-N with a layered phase was afterwards reported between 120 and 180GPa. Here, by laser heating pure nitrogen from 180GPa, a sole crystalline phase is characterized above 240GPa while an amorphous transparent phase is obtained at pressures below. X-ray diffraction and Raman vibrational data reveal a tetragonal lattice (P4_{2}bc) that matches the predicted hexagonal layered polymeric nitrogen (HLP-N) structure. Density-functional theory calculations which include the thermal and dispersive interaction contributions are performed to discuss the stability of the HLP-N structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.