Abstract

A novel supramolecular solvent (SUPRAS) based on hexafluoroisopropanol (HFIP)/Brij-35 was proposed for liquid-phase microextraction (LPME) of parabens in water samples, pharmaceuticals and personal care products. Brij-35 is a cost-effective and non-toxic non-ionic surfactant, but it has a high cloud point (>100 °C). HFIP, with the features of strong hydrogen-bond donor, high density and powerful hydrophobicity, was used as the cloud point-reducing agent and self-assembling and density-regulating solvent of Brij-35. Upon adding HFIP into the Brij-35 aqueous solution, the cloud point of Brij-35 was decreased to below room temperature, and the SUPRAS was formed in the bottom over a wide range of HFIP and Brij-35 concentrations at room temperature. The SUPRAS was composed of Brij-35, HFIP and water, having a density larger than water, and it showed a large spherical structure of positive micellar aggregates (2–8 μm). The HFIP/ Brij-35 SUPRAS-based LPME procedure was non-thermodependent and could be performed at room temperature with centrifugation using normal centrifuge tubes, being very simple. In the extraction of six parabens, the HFIP/ Brij-35 SUPRAS-based LPME method showed short extraction time (3.3 min), low solvent consumption (0.3 mL), and large enrichment factor (26–193). The method of HFIP/ Brij-35 SUPRAS-based LPME with HPLC-DAD gave good linearity for the quantification of parabens with correlation coefficients larger than 0.9990. The limits of detection based on a signal-to-noise ratio of 3 were from 0.042 to 0.167 μg L−1. The recoveries for the spiked real samples were in the range of 90.2–112.4% with relative standard deviation less than 8.9%. Except for tap water, one or several paraben (s) were detected in all the other real samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.