Abstract

Heusler alloy has been widely utilized in magnetoresistive sensors to enhance the device performance. In this work, we theoretically investigate the performance of Heusler-alloy-based magnetoresistive sensors with a synthetic antiferromagnet (SAF) layer. The atomistic model combined with the spin accumulation model will be used in this work. The former is used to construct the reader stack and investigate the magnetization dynamics in the system. The latter is employed to describe the spin transport behavior at any position of the structure. We first perform simulations of the exchange bias (EB) phenomenon in the IrMn/ (CFS) system providing a high EB field. Then, a realistic reader stack of IrMn/CFS/Ru/CFS/Ag/CFS is constructed via an atomistic model. Subsequently, the resistance–area product (RA) and magnetoresistance (MR) ratio of the reader can be calculated by using the spin accumulation model. As a result of the spin transport behavior in the Heusler-alloy-based reader stack including SAF structure at 0 K, an enhancement of the MR ratio up to 120 and RA can be observed. This study demonstrates the important role of the Heusler alloy and SAF layer in the development of magnetoresistive sensors for the application of readers in hard disk drives with an areal density beyond 2 Tb in−2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.