Abstract
AbstractProviding high quality solutions is crucial when solving NP‐hard time‐extended multi‐robot task allocation (MRTA) problems. Reoptimization, that is, the concept of making use of a known solution to an optimization problem instance when the solution to a similar problem instance is sought, is a promising and rather new research field in this application domain. However, so far no approximative time‐extended MRTA solution approaches exist for which guarantees on the resulting solution's quality can be given. We investigate the reoptimization problems of inserting as well as deleting a task to/from a time‐extended MRTA problem instance. For both problems, we can give performance guarantees in the form of an upper bound of 2 on the resulting approximation ratio for all heuristics fulfilling a mild assumption. We furthermore introduce specific solution heuristics and prove that smaller and tight upper bounds on the approximation ratio can be given for these heuristics if only temporal unconstrained tasks and homogeneous groups of robots are considered. A conclusory evaluation of the reoptimization heuristic demonstrates a near‐to‐optimal performance in application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.