Abstract

This paper addresses a research problem of scheduling parallel, non-identical batch processors in the presence of dynamic job arrivals, incompatible job-families and non-identical job sizes. We were led to this problem through a real-world application involving the scheduling of heat-treatment operations of steel casting. The scheduling of furnaces for heat-treatment of castings is of considerable interest as a large proportion of the total production time is the processing times of these operations. In view of the computational intractability of this type of problem, a few heuristic algorithms have been designed for maximizing the utilization of heat-treatment furnaces of steel casting manufacturing. Extensive computational experiments were carried out to compare the performance of the heuristics with the estimated optimal value (using the Weibull technique) and for relative effectiveness among the heuristics. Further, the computational experiments show that the heuristic algorithms proposed in this paper are capable of obtaining near (statistically estimated) optimal utilization of heat-treatment furnaces and are also capable of solving any large size real-life problems with a relatively low computational effort.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.