Abstract

In light of the widespread use of electric vehicles for urban distribution, this paper delves into the electric vehicle routing problem (EVRP): specifically addressing multiple trips per vehicle, diverse vehicle types, and simultaneous pickup and delivery. The primary objective is to minimize the overall cost, which encompasses travel expenses, waiting times, recharging costs, and fixed vehicle costs. The focal problem is formulated as a heterogeneous and multi-trip electric vehicle routing problem with pickup and delivery (H-MT-EVRP-PD). Additionally, we introduce two heuristic algorithms to efficiently approximate solutions within a reasonable computational time. The variable neighborhood search (VNS) algorithm and the adaptive large neighborhood search (ALNS) algorithm are presented and compared based on our computational experiences with both. Through solving a series of large-scale real-world instances for the H-MT-EVRP-PD and smaller instances using an exact method, we demonstrate the efficacy of the proposed approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.