Abstract

In this paper, heteroscedastic nonlinear regression (HNLR) models under the flexible class of two–piece distributions based on the scale mixtures of normal (TP–SMN) family were examined. This novel class of nonlinear regression (NLR) models is a generalization of the well-known heteroscedastic symmetrical nonlinear regression models. The TP–SMN is a rich class of distributions that covers symmetric and asymmetric as well as heavy-tailed distributions. Using the suitable hierarchical representation of the family, the researchers first derived an EM–type algorithm for iteratively computing maximum likelihood (ML) estimates of the parameters. Then, in order to examine the performance of the proposed models and methods, some simulation studies were presented to show the robust aspect of this flexible class against outlying and also atypical data. As the last step, a natural real dataset was fitted under the proposed HNLR models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.